PCN 14_0067 ### ADG5208/ADG5209 Data Sheet Changes #### Rev. A to Rev. B This document highlights the performance differences between the Rev.A and Rev.B data sheet for the ADG5208 and ADG5209 Analog Multiplexers. For full product information and changes to Typical Performance Characteristics plots please refer to the ADG5208/09 Rev.B data sheet. #### 1. HBM ESD | HBM ESD | Rev A | Rev B | | |----------------------|-------|-------|--| | I/O Port to Supplies | 4kV | 8kV | | | I/O Port to I/O Port | 1kV | 2kV | | | All other pins | 4kV | 8kV | | #### 2. Datasheet specification changes from Rev. A to Rev. B Tables 1 to 4 outline a datasheet specification comparison of Rev. A to Rev. B material. The changed specifications are highlighted in red font. # SPECIFICATION CHANGES FROM Rev. A to Rev. B **Table** 1. V_{DD} = +15 $V \pm 10\%$, V_{SS} = -15 $V \pm 10\%$, GND = 0 V, unless otherwise noted. | Parameter | 25°C | Rev.A
-40°C to
+85°C | −40°C to
+125°C | | 25°C | R
-40°C to
+85°C | lev. B | -40°C to
+125°C | | Unit | Test Conditions/
Comments | |--|---------------|----------------------------|----------------------|-----|---------------|------------------------|--------|------------------------------------|-----|---------------------------|--| | ANALOG SWITCH | | | | | | | | | | v | | | Analog Signal Range | 160 | | V_{DD} to V_{SS} | | 160 | | | V _{DD} to V _{SS} | | ν
Ωtyp | $V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$ | | On Resistance, R _{ON} | 200 | 250 | | 280 | 200 | | 250 | | 280 | Ω max | V _{DD} = +13.5 V, V _{SS} =
-13.5 V | | On-Resistance Match | 3.5 | | | | 3.5 | | | | | Ωtyp | $V_s = \pm 10 \text{ V}, I_s = -1 \text{ mA}$ | | Between Channels, ΔR _{ON} | 8 | 9 | | 10 | 8 | | 9 | | 10 | Ωmax | V 110 V I 1 A | | On-Resistance Flatness,
R _{FLAT (ON)} | 40
50 | 65 | | 70 | 40
50 | | 65 | | 70 | Ω typ Ω max | $V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$ | | LEAKAGE CURRENTS | | | | | | | | | | | V _{DD} = +16.5 V, V _{SS} =
-16.5 V | | | ±0.00 | | | | ±0.00 | | | | | nA typ | $V_s = \pm 10 \text{ V}, V_D = \pm 10 \text{ V}$ | | Source Off Leakage, I₅ (Off) | 5 | ±0.2 | 10.4 | | 5 | 10.2 | | 10.4 | | | VS-110 V, VD-110 V | | | ±0.1
±0.00 | ±0.2 | ±0.4 | | ±0.1
±0.00 | ±0.2 | | ±0.4 | | nA max
nA typ | $V_S = \pm 10 \text{ V}, V_D = \pm 10 \text{ V}$ | | Drain Off Leakage, I _D (Off) | 5
±0.1 | ±0.4 | ±1.4 | | 5
±0.1 | ±0.4 | | ±1.4 | | nA max | VS - 110 V, VD - 110 V | | Channel On Leakage, I _D (On), | ±0.1
±0.01 | ±0.4 | II.4 | | ±0.1
±0.01 | ±0.4 | | II.4 | | | $\pm V_S = V_D = \pm 10 \text{ V}$ | | Is (On) | | 105 | .1.4 | | | .0.5 | | .1.4 | | nA typ | | | DIGITAL INPUTS | ±0.2 | ±0.5 | ±1.4 | | ±0.2 | ±0.5 | | ±1.4 | | nA max | | | Input High Voltage, V _{INH} | | | | 2 | | | | | 2 | V min | | | Input Low Voltage, V _{INL}
Input Current, I _{INL} or I _{INH} | 0.002 | | | 8.0 | 0.002 | | | | 8.0 | V max
μΑ typ | V _{IN} = V _{GND} or V _{DD} | | • | | | ±0.1 | | | | | ±0.1 | | μA max | VIN — VGND OI VDD | | Digital Input Capacitance, C _{IN} Dynamic Characteristics ¹ | 3 | | | | 3 | | | | | pF typ | | | Transition Time, transition | 170 | | | | 150 | | | | | ns typ | $R_L = 300 \Omega$, $C_L = 35 pF$ | | Transition Time, transition | 205
145 | 245 | | 275 | 180 | | 210 | | 245 | ns max | $V_S = 10 \text{ V}$
$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$ | | t _{on} (EN) | 185 | 220 | | 245 | 125
150 | | 185 | | 215 | ns typ
ns max | $V_S = 10 \text{ V}$ | | t _{OFF} (EN) | 120 | 165 | | 100 | 160 | | 210 | | 220 | ns typ | $R_L = 300 \Omega, C_L = 35 pF$
$V_S = 10 V$ | | Break-Before-Make Time | 145
65 | 165 | | 180 | 185
55 | | 210 | | 230 | ns max
ns typ | $V_S = 10 \text{ V}$
$R_L = 300 \Omega, C_L = 35 \text{ pF}$ | | Delay, t₀ | | | | 30 | | | | | 25 | ns min | $V_{S1} = V_{S2} = 10 \text{ V}$ | | Charge Injection, Q _{NJ} | 0.4 | | | | 0.2 | | | | | pC typ | $V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 $
nF | | Off Isolation | -90 | | | | -86 | | | | | dB typ | $R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz$ | | Channel-to-Channel | -90 | | | | -80 | | | | | dB typ | $R_L = 50 \Omega$, $C_L = 5 pF$, $f =$ | | Crosstalk
–3 dB Bandwidth | | | | | | | | | | | 1 MHz
$R_L = 50 \Omega$, $C_L = 5 pF$ | | ADG5208
ADG5209 | 54
133 | | | | 110
240 | | | | | MHz typ
MHz typ | , , | | Insertion Loss | -6.4 | | | | -6.4 | | | | | dB typ | $R_L = 50 \Omega$, $C_L = 5 pF$, $f =$ | | Cs (Off) | 5.5 | | | | 2.9 | | | | | pF typ | 1 MHz
V _s = 0 V, f = 1 MHz | | C _D (Off) | | | | | | | | | | ' ' ' | | | ADG5208
ADG5209 | 52
26 | | | | 34
17 | | | | | pF typ
pF typ | $V_S = 0 \text{ V, } f = 1 \text{ MHz}$
$V_S = 0 \text{ V, } f = 1 \text{ MHz}$ | | C_D (On), C_S (On) | | | | | | | | | | | | | ADG5208
ADG5209 | 58
31 | | | | 37
21 | | | | | pF typ
pF typ | $V_S = 0 \text{ V, } f = 1 \text{ MHz}$
$V_S = 0 \text{ V, } f = 1 \text{ MHz}$ | | POWER REQUIREMENTS | | | | | | | | | | | $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ | | | 45 | | | | 45 | | | | | uA tun | Digital inputs = 0 V or | | loo | | | | 70 | | | | | 70 | μΑ typ | V _{DD} | | | 55 | | | 70 | 55 | | | | 70 | μA max | Digital inputs = 0 V or | | lss | 0.001 | | | 1 | 0.001 | | | | 1 | μA typ | V _{DD} | | V _{DD} /Vss | | | ±9/±22 | 1 | | | | ±9/±22 | 1 | μΑ max
V min/V | GND = 0 V | | V DD/ VSS | | | エラ/エZZ | | | | | エラ/ エZZ | | max | GIAD = 0 A | ¹ Guaranteed by design, not subject to production test. **Table 2.** V_{DD} = +20V ± 10%, V_{SS} = -20 V ± 10%, GND = 0 V, unless otherwise noted. | Parameter | 25°C | Rev.A
-40°C to | -40°C to | | 25°C | −40°C to | Rev. B | -40°C to | | Unit | Test Conditions/ | |---|------------|-------------------|------------------------------------|----------|------------|----------|--------|------------------------------------|----------|---------------------------|---| | ANALOG SWITCH | | +85°C | +125°C | | | +85°C | | +125℃ | | | Comments | | Analog Signal Range | | | V _{DD} to V _{SS} | | | | | V _{DD} to V _{SS} | | ٧ | | | | 140 | | | | 140 | | | | | Ω typ | $V_s = \pm 15 \text{ V}, I_s = -1 \text{ mA}$ | | On Resistance, R _{ON} | 160 | 200 | | 230 | 160 | | 200 | | 230 | Ω max | $V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}$ | | On-Resistance Match | 3.5 | | | | 3.5 | | | | | Ωtyp | $V_s = \pm 15 \text{ V, } I_s = -1 \text{ mA}$ | | Between Channels, ∆Ron
On-Resistance Flatness, | 8
34 | 9 | | 10 | 8
34 | | 9 | | 10 | Ω max | $V_s = \pm 15 \text{ V, } I_s = -1 \text{ mA}$ | | R _{FLAT (ON)} | 45 | 55 | | 60 | 45 | | 55 | | 60 | Ω typ Ω max | VS=±13 V, IS=-1 IIIA | | LEAKAGE CURRENTS | | | | | | | | | | | $V_{DD} = +22 \text{ V}, V_{SS} = -22$ | | | ±0.00 | | | | ±0.00 | | | | | | V | | Source Off Leakage, I _s (Off) | 5 | | | | 5 | | | | | nA typ | $V_S = \pm 15 \text{ V}, V_D = \pm 15 \text{ V}$ | | | ±0.1 | ±0.2 | ±0.4 | | ±0.1 | ±0.2 | | ±0.4 | | nA max | | | Drain Off Leakage, I _D (Off) | ±0.00
5 | | | | ±0.00
5 | | | | | nA typ | $V_S = \pm 15 \text{ V}, V_D = \pm 15 \text{ V}$ | | 3, 1, 1, | ±0.1 | ±0.4 | ±1.4 | | ±0.1 | ±0.4 | | ±1.4 | | nA max | ., ., | | Channel On Leakage, I _D (On), | ±0.01 | | | | ±0.01 | | | | | nA typ | $\pm V_{S} = V_{D} = \pm 15 \text{ V}$ | | ls (On) | ±0.2 | ±0.5 | ±1.4 | | ±0.2 | ±0.5 | | ±1.4 | | nA max | | | DIGITAL INPUTS | | | | 2 | | | | | | | | | Input High Voltage, V _{INH}
Input Low Voltage, V _{INL} | | | | 2
0.8 | | | | | 2
0.8 | V min
V max | | | Input Current, InL or InH | 0.002 | | | 0.0 | 0.002 | | | | 0.0 | μA typ | $V_{IN} = V_{GND} \text{ or } V_{DD}$ | | Digital Input Capacitance, C _N | 3 | | ±0.1 | | 3 | | | ±0.1 | | μΑ max
pF typ | | | DYNAMIC CHARACTERISTICS ¹ | , | | | | , | | | | | рг тур | | | Transition Time, trransition | 160 | | | | 140 | | | | | ns typ | $R_L = 300 \Omega$, $C_L = 35 pF$ | | | 195
145 | 225 | | 255 | 170
120 | | 195 | | 220 | ns max
ns typ | $V_s = 10 \text{ V}$
$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$ | | t _{ON} (EN) | 170 | 200 | | 225 | 140 | | 170 | | 195 | ns max | $V_S = 10 \text{ V}$ | | toff (EN) | 120
140 | 155 | | 170 | 160
185 | | 205 | | 220 | ns typ | $R_L = 300 \Omega, C_L = 35 pF$
$V_S = 10 V$ | | Break-Before-Make Time | 55 | 133 | | 170 | 45 | | 203 | | 220 | ns max
ns typ | $V_S = 10 \text{ V}$
$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$ | | Delay, t₀ | | | | 30 | | | | | 20 | ns min | $V_{S1} = V_{S2} = 10 \text{ V}$ | | Charge Injection, Q _{NJ} | 0.3 | | | | 0.4 | | | | | pC typ | $V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}$ | | Off Isolation | -90 | | | | -86 | | | | | dB typ | $R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz$ | | Channel-to-Channel
Crosstalk | -90 | | | | -80 | | | | | dB typ | $R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz$ | | -3 dB Bandwidth | | | | | | | | | | | $R_L = 50 \Omega$, $C_L = 5 pF$ | | ADG5208
ADG5209 | 60
130 | | | | 121
255 | | | | | MHz typ
MHz typ | | | | -5.6 | | | | -5.6 | | | | | | $R_L = 50 \Omega, C_L = 5 pF, f =$ | | Insertion Loss | | | | | | | | | | dB typ | 1 MHz; see | | C _s (Off)
C _D (Off) | 5.5 | | | | 2.8 | | | | | pF typ | $V_S = 0 V, f = 1 MHz$ | | ADG5208 | 51 | | | | 33 | | | | | pF typ | $V_S = 0 \text{ V, } f = 1 \text{ MHz}$ | | ADG5209 C_D (On), C_S (On) | 26 | | | | 17 | | | | | pF typ | $V_S = 0 V, f = 1 MHz$ | | ADG5208 | 57 | | | | 36 | | | | | pF typ | $V_S = 0 V, f = 1 MHz$ | | ADG5209 | 31 | | | | 21 | | | | | pF typ | $V_S = 0 \text{ V, } f = 1 \text{ MHz}$ | | POWER REQUIREMENTS | | | | | | | | | | | $V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
Digital inputs = 0 V or | | loo | 50 | | | | 50 | | | | | μA typ | V _{DD} | | | 70 | | | 110 | 70 | | | | 110 | μA max | Digital inputs = 0 V or | | lss | 0.001 | | | | 0.001 | | | | | μA typ | V _{DD} | | | | | | 1 | | | | | 1 | μA max | | | V _{DD} /V _{SS} | | | ±9/±22 | | | | | ±9/±22 | | V min/V
max | GND = 0 V | Guaranteed by design, not subject to production test. **Table 3.** V_{DD} = +12V ± 10%, V_{SS} = 0V GND = 0 V, unless otherwise noted. | Parameter | 25°C | Rev.A
-40°C to
+85°C | -40°C to
+125°C | | 25°C | Rev.
-40°C to
+85°C | B
-40°C to
+125°C | | Unit | Test Conditions/
Comments | |--|------------|----------------------------|------------------------|----------|------------|---------------------------|-------------------------|------------|--------------------------|--| | ANALOG SWITCH
Analog Signal Range | | | 0 V to V _{DD} | | | | 0 V to V _{DD} |) | V | | | | 350 | | | | 350 | | 0 1 10 100 | | Ωtyp | $V_S = 0 \text{ V to } 10V, I_S = -1 \text{ mA}$ | | On Resistance, R _{ON} | 500 | 610 | 7 | 700 | 500 | 610 |) | 700 | Ω max | $V_{DD} = +10.8V, V_{SS} = 0$ | | On-Resistance Match | 5 | | | | 5 | | | | Ωtyp | $V_S = 0 \text{ V to } 10V, I_S = -1$
mA | | Between Channels, ΔR _{ON} | 20 | 22 | | 24 | 20 | 22 | 2 | 24 | Ω max | $V_S = 0 \text{ V to } 10 \text{ V, } I_S =$ | | On-Resistance Flatness,
R _{FLAT (ON)} | 160 | 225 | 2 | 170 | 160 | 227 | - | 270 | Ωtyp | -1 mA | | LEAKAGE CURRENTS | 280 | 335 | 3 | 370 | 280 | 335 |) | 370 | Ω max | $V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$ | | | ±0.00 | | | | ±0.00 | | | | nA typ | $V_s = 1V/10V, V_D = +10$ | | Source Off Leakage, Is (Off) | 5
±0.1 | ±0.2 | ±0.4 | | 5
±0.1 | ±0.2 | ±0.4 | | nA max | V/1V | | Drain Off Leakage, I _D (Off) | ±0.00
5 | | | | ±0.00
5 | | | | nA typ | $V_s = 1V/10V, V_D = +10$
V/1V | | Drain on Leanage, ip (on) | ±0.1 | ±0.4 | ±1.4 | | ±0.1 | ±0.4 | ±1.4 | | nA max | | | Channel On Leakage, I _D (On
), I _s (On) | ±0.01 | | | | ±0.01 | | | | nA typ | $\pm V_S = V_D = 1 \text{ V}/10\text{V}$ | | DIGITAL INPUTS | ±0.2 | ±0.5 | ±1.4 | | ±0.2 | ±0.5 | ±1.4 | | nA max | | | Input High Voltage, V _{INH}
Input Low Voltage, V _{INL}
Input Current, I _{INL} or I _{INH} | 0.002 | | ±0.1 | 2
0.8 | 0.002 | | ±0.1 | 2
0.8 | V min
V max
μA typ | $V_{IN} = V_{GND}$ or V_{DD} | | Digital Input Capacitance,
C _{IN} | 3 | | ±0.1 | | 3 | | ±0.1 | | μA max
pF typ | | | DYNAMIC
CHARACTERISTICS ¹ | | | | | | | | | | | | Transition Time, t _{TRANSITION} | 210 | 220 | 2 | 200 | 200 | 201 | | 225 | ns typ | $R_L = 300 \Omega, C_L = 35 pF$ | | t _{ON} (EN) | 270
215 | 330 | | 380 | 250
180 | 295 | | 335 | ns max
ns typ | $V_S = 8 \text{ V}$
$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$ | | | 275
115 | 345 | 4 | 100 | 225
165 | 280 |) | 320 | ns max
ns typ | $V_S = 8 \text{ V}$
$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$ | | t _{OFF} (EN)
Break-Before-Make Time | 140
135 | 160 | 1 | 175 | 200
95 | 225 | i | 245 | ns max | $V_S = 8 \text{ V}$
$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$ | | Delay, t _D | 133 | | | 70 | 93 | | | 50 | ns typ
ns min | $V_{S1} = V_{S2} = 8 \text{ V}$ | | Charge Injection, Q _{INJ} | 0.3 | | | | 0.2 | | | | pC typ | $V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}$ | | Off Isolation | -90 | | | | -86 | | | | dB typ | $R_L = 50 \Omega, C_L = 5 pF, f$
= 1 MHz | | Channel-to-Channel
Crosstalk
–3 dB Bandwidth | -90 | | | | -80 | | | | dB typ | $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$
$R_L = 50 \Omega$, $C_L = 5 pF$ | | ADG5208
ADG5209 | 60
120 | | | | 95
180 | | | | MHz typ
MHz typ | · | | Insertion Loss | -8.8 | | | | -8.9 | | | | dB typ | $R_L = 50 \Omega, C_L = 5 pF, f$ | | C _s (Off) | 6 | | | | 3.3 | | | | pF typ | = 1 MHz; see
$V_S = 0 V$, $f = 1 MHz$ | | C _D (Off)
ADG5208
ADG5209 | 56
28 | | | | 38
19 | | | | pF typ
pF typ | $V_S = 0 V, f = 1 MHz$
$V_S = 0 V, f = 1 MHz$ | | C _D (On), C _S (On)
ADG5208
ADG5209 | 63
35 | | | | 41
24 | | | | pF typ
pF typ | $V_S = 0 V, f = 1 MHz$
$V_S = 0 V, f = 1 MHz$ | | POWER REQUIREMENTS | | | | | | | | | | $V_{DD} = 13.2$ | | I_{DD} | 40 | | | 65 | 40 | | | <i>c</i> = | μA typ | Digital inputs = 0 V or V_{DD} | | V_{DD} | 50 | | 9/40 | 65 | 50 | | 9/40 | 65 | μΑ max
V min/V
max | GND = 0 V, Vss=0V | Guaranteed by design, not subject to production test. **Table 4.** V_{DD} = +36V ± 10%, V_{SS} = 0V GND = 0 V, unless otherwise noted. | Parameter | 25°C | Rev.A
-40°C to
+85°C | -40°C to
+125°C | | 25°C | -40°C to
+85°C | Rev. B | -40°C to
+125°C | | Unit | Test Conditions/
Comments | |---|------------|----------------------------|------------------------|------------|------------|-------------------|--------|------------------------|----------|---------------------------|--| | ANALOG SWITCH Analog Signal Range | | | 0 V to V _{DD} | | | | | 0 V to V _{DD} | | V | | | Analog Signal hange | 150 | | O V LO VDD | | 150 | | | O V LO VDD | | ν
Ωtyp | $V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$ | | On Resistance, R _{ON} | 170 | 215 | 2 | 45 | 170 | | 215 | | 245 | Ω max | $V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$ | | On-Resistance Match | 3.5 | | | | 3.5 | | | | | Ωtyp | $V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$ | | Between Channels, ΔR _{ON}
On-Resistance Flatness, | 8
35 | 9 | | 10 | 8
35 | | 9 | | 10 | Ω max Ω typ | $V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$ | | R _{FLAT} (ON) | 55 | 65 | | 70 | 55
55 | | 65 | | 70 | Ω max | | | LEAKAGE CURRENTS | | | | | | | | | | | $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ | | | ±0.00 | | | | ±0.00 | | | | | nA typ | $V_S = \pm 10 \text{ V}, V_D = \pm 10 \text{ V}$ | | Source Off Leakage, Is (Off) | 5
±0.1 | ±0.2 | ±0.4 | | 5
±0.1 | ±0.2 | | ±0.4 | | nA max | 13 =10 1, 10 =10 1 | | 2 . 0 | ±0.00 | | | | ±0.00 | | | | | nA typ | $V_S = \pm 10 \text{ V}, V_D = \pm 10 \text{ V}$ | | Drain Off Leakage, I _D (Off) | 5
±0.1 | ±0.4 | ±1.4 | | 5
±0.1 | ±0.4 | | ±1.4 | | nA max | .5,.5 | | Channel On Leakage, I _D (On | ±0.01 | | | | ±0.01 | | | | | nA typ | $V_S = V_D = \pm 10 \text{ V};$ | |), I _S (On) | ±0.2 | ±0.5 | ±1.4 | | ±0.2 | ±0.5 | | ±1.4 | | nA max | | | DIGITAL INPUTS | | | | 2 | | | | | 2 | V main | | | Input High Voltage, V _{INH}
Input Low Voltage, V _{INL} | | | (| 2
0.8 | | | | | 2
0.8 | V min
V max | | | Input Current, I _{INL} or I _{INH} | 0.002 | | .01 | | 0.002 | | | .01 | | μA typ | $V_{IN} = V_{GND}$ or V_{DD} | | Digital Input Capacitance, | 3 | | ±0.1 | | 3 | | | ±0.1 | | μA max | | | CIN | 3 | | | | 3 | | | | | pF typ | | | DYNAMIC
CHARACTERISTICS ¹ | | | | | | | | | | | | | Transition Time, trransition | 185 | 245 | า | EO | 170 | | 225 | | 225 | ns typ | $R_L = 300 \Omega$, $C_L = 35 pF$ | | | 230
170 | 245 | 2 | !59 | 205
150 | | 225 | | 235 | ns max
ns typ | $V_S = 10 \text{ V}$
$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$ | | ton (EN) | 210
125 | 230 | 2 | 255 | 180
180 | | 195 | | 215 | ns max | $V_S = 10 \text{ V}$
$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$ | | t _{OFF} (EN) | 180 | 180 | 1 | 80 | 225 | | 225 | | 230 | ns typ
ns max | $V_S = 10 \text{ V}$ | | Break-Before-Make Time
Delay, t _D | 70 | | | 35 | 55 | | | | 25 | ns typ
ns min | $R_L = 300 \Omega$, $C_L = 35 pF$
$V_{S1} = V_{S2} = 10 V$ | | Charge Injection, Q _{INJ} | 0.4 | | | رر | 0.3 | | | | 23 | pC typ | $V_S = 0 V$, $R_S = 0 \Omega$, $C_L =$ | | <i>y</i> , | | | | | | | | | | | 1 nF
R _L = 50 Ω, C _L = 5 pF, f | | Off Isolation | -90 | | | | -86 | | | | | dB typ | = 1 MHz | | Channel-to-Channel
Crosstalk | -90 | | | | -80 | | | | | dB typ | $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$ | | -3 dB Bandwidth | | | | | | | | | | | $R_L = 50 \Omega$, $C_L = 5 pF$ | | ADG5208
ADG5209 | 65
130 | | | | 105
195 | | | | | MHz typ
MHz typ | | | Insertion Loss | -6 | | | | -6.2 | | | | | dB typ | $R_L = 50 \Omega, C_L = 5 pF, f$ | | Cs (Off) | 5.5 | | | | 2.7 | | | | | pF typ | = 1 MHz; see
V _s = 0 V, f = 1 MHz | | C _D (Off) | | | | | | | | | | | | | ADG5208
ADG5209 | 51
25 | | | | 32
16 | | | | | pF typ
pF typ | $V_S = 0 \text{ V, } f = 1 \text{ MHz}$
$V_S = 0 \text{ V, } f = 1 \text{ MHz}$ | | C_D (On), C_S (On) | | | | | 25 | | | | | | | | ADG5208
ADG5209 | 57
32 | | | | 35
20 | | | | | pF typ
pF typ | $V_S = 0 \text{ V, } f = 1 \text{ MHz}$
$V_S = 0 \text{ V, } f = 1 \text{ MHz}$ | | POWER REQUIREMENTS | | | | | | | | | | • • | $V_{DD} = +16.5 \text{ V}, V_{SS} =$ | | | 90 | | | | 90 | | | | | uA tura | -16.5 V
Digital inputs = 0 V or | | lod | 80
100 | | 1 | 30 | 80
100 | | | | 130 | μA typ | V _{DD} | | V_DD | 100 | | 9/40 | 3 ∪ | 100 | | | 9/40 | 130 | μΑ max
V min/V | GND = 0 V, Vss=0V | | Guaranteed by design not su | | | | | | | | <i>3 4</i> 0 | | max | 011D - 0 v, v55=0v | Guaranteed by design, not subject to production test.